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1. Introduction

This article is concerned with the two-sample Behrens–Fisher problem in high-dimensional settings. Assume that
{Xi1, . . . ,Xini} for i = 1 and 2 are two independent random samples with sizes n1 and n2 from p-variate distributions
F(x − µ1) and G(x − µ2) located at the p-variate centers µ1 and µ2, respectively. We wish to test

H0 : µ1 = µ2 versus H1 : µ1 ≠ µ2, (1)

where their covariances 61 and 62 are unknown. If 61 = 62, the classic Hotelling’s T 2 test is a natural choice when the
dimensions are fixed. However, when the dimension is larger than the total sample size n = n1 +n2, Hotelling’s T 2 test does
not work. Recently, many efforts have been devoted to construct new test procedures for high-dimensional settings. One
natural method involves replacing the sample covariancematrix by the identitymatrix (Bai and Saranadasa, 1996; Chen and
Qin, 2010; Paindaveine and Verdebout, 2013; Ley et al., 2015). However, those test statistics are not invariant under scalar
transformations, Xij → BXij where B is a diagonal matrix. Srivastava and Du (2008) proposed a scalar-transformation-
invariant test by replacing the sample covariance matrix with its diagonal matrix. And Srivastava et al. (2013) extended
this method to the unequal covariance case. Feng et al. (in press) proposed another scalar-transformation-invariant test
that allows the dimension with a smaller order of n3. Gregory et al. (in press) proposed a generalized component test with
p = o(n6). However, the requirement of p to be of the polynomial order ofn is too restrictive in the ‘‘large p, smalln’’ situation.
For the conditions on p and n, some tests adopt permutations or simulations to compute p-values, such as Nettleton et al.
(2008), Chang et al. (2014) and Thulin (2014). Park and Ayyala (2013) proposed a scalar-transformation-invariant test that

∗ Corresponding author.
E-mail address: sunfs359@nenu.edu.cn (F. Sun).

http://dx.doi.org/10.1016/j.spl.2015.05.017
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.05.017
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.05.017&domain=pdf
mailto:sunfs359@nenu.edu.cn
http://dx.doi.org/10.1016/j.spl.2015.05.017


30 L. Feng, F. Sun / Statistics and Probability Letters 105 (2015) 29–36

allows the dimensions to be arbitrarily large. However, their test is not shift-invariant. The differences between the ratio-
consistent estimators of the diagonal matrix are not ignorable. Under the null hypothesis,

E(TPA) =

p
k=1

2n−2µ2
k(σ

2
1k − σ 2

2k)
2

(κσ 2
1k + (1 − κ)σ 2

2k)
3
(1 + o(1))

where σ 2
ij , i = 1, 2, j = 1, . . . , p are the variances of the variables, and µ1 = µ2 = µ0 = (µ1, . . . , µp), n1/n → κ .

When the variances of the two samples are not all equal and the common vector is very large, E(TPA) is not zero even under
the null hypothesis. In this case, we need another hypothesis test for the equality of the two covariance matrices (Li and
Chen, 2012). To overcome this issue, we propose a novel test that is both scalar-invariant and shift-invariant. Under the null
hypothesis, the expectation of our test statistic is exactly zero. There is no bias term in our test statistic. In addition, we
do not require a relationship between the dimensions and the sample sizes. The dimension p can be arbitrarily large. The
asymptotic normality of the proposed test can be derived under some mild conditions. We also proposed the asymptotic
relative efficiency of our test with respect to Chen and Qin (2010)’s test. The simulation studies are consistent with the
theoretical results.

The rest of the paper is organized as follows. In Section 2, we propose the new test statistic and establish its asymptotic
normality. Simulation studies are conducted in Section 3. We provide the technical details in the Appendix.

2. Our test

We propose a new shift and scalar transformation invariant test statistic,

Tn =
1

n1(n1 − 1)
1

n2(n2 − 1)

p
k=1

n1 n1
i≠j

n2 n2
s≠t

(X1ik − X2sk)(X1jk − X2tk)

σ̂ 2
1k(i,j) + γ σ̂ 2

2k(s,t)

where γ = n1/n2, σ̂ 2
1k(i,j) is the sample variance of {X1lk}

n1
l=1 excluding X1ik and X1jk. So does σ̂ 2

2k(s,t). Because the numerator
(X1ik − X2sk)(X1jk − X2tk) is independent of the denominator σ̂ 2

1k(i,j) + γ σ̂ 2
2k(s,t),

E


(X1ik − X2sk)(X1jk − X2tk)

σ̂ 2
1k(i,j) + γ σ̂ 2

2k(s,t)


= E((X1ik − X2sk)(X1jk − X2tk))E


{σ̂ 2

1k(i,j) + γ σ̂ 2
2k(s,t)}

−1
= (µ1k − µ2k)

2E

{σ̂ 2

1k(i,j) + γ σ̂ 2
2k(s,t)}

−1 .
Unlike the three different estimators of σ 2

1k + γ σ 2
2k for the three parts of the test statistic in Park and Ayyala (2013), we use

the leave-two-out sample variance for each numerator. E

{σ̂ 2

1k(i,j) + γ σ̂ 2
2k(s,t)}

−1

is exactly the same for each numerator

and

E(Tn) =

p
k=1

(µ1k − µ2k)
2E

{σ̂ 2

1k(i,j) + γ σ̂ 2
2k(s,t)}

−1 .
Under the null hypothesis H0, E(Tn) is exactly zero. Furthermore, under the Conditions (C1)–(C3) stated in the following,

E(Tn) = ∥3(µ1 − µ2)∥
2
+ o(


var(Tn))

var(Tn) =


2

n1(n1 − 1)
tr((3613)2) +

2
n2(n2 − 1)

tr((3623)2) +
4

n1n2
tr(3613

2623)


(1 + o(1))

where 3 = diag

(σ 2

11 + γ σ 2
21)

−1/2, . . . , (σ 2
1p + γ σ 2

2p)
−1/2


.

The tests statistics proposed by Bai and Saranadasa (1996) and Chen andQin (2010) are invariant under orthogonal trans-
formations, Xij → PXij where P is an orthogonal matrix. In contrast, Tn is not invariant under orthogonal transformations,
but it is invariant under location shifts and scalar transformations.

Proposition 1. The Tn defined above is invariant under location shifts and scalar transformations. Here, the location shifts and
scalar transformations mean

Xij → BXij + c for i = 1, 2, j = 1, . . . , ni,

where c is a constant vector, B = diag(b21, . . . , b
2
p), and b21, . . . , b

2
p are non-zero constants.

Assume, similar to Bai and Saranadasa (1996) and Chen and Qin (2010), that Xij’s come from the following multivariate
model:

Xij = 0izij + µi for j = 1, . . . , ni, i = 1, 2, (2)
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where each 0i is a p×mmatrix for somem ≥ p such that 0i0
T
i = 6i, and {zij}

ni
j=1 arem-variate independent and identically

distributed random vectors such that

E(zi) = 0, var(zi) = Im, E(z4il ) = 3 + ∆, ∆ > 0, E(z8il ) = m8 ∈ (0, ∞),

E(zα1
ik1

zα2
ik2

· · · zαq
ikq) = E(zα1

ik1
)E(zα2

ik2
) · · · E(zαq

ikq),
(3)

for a positive integer q such that
q

k=1 αk ≤ 8 and k1 ≠ k2 · · · ≠ kq. The data structure generates a rich collection of Xi from
zi with a given covariance. Additionally, we need the following conditions as n and p → ∞:

(C1) n1/(n1 + n2) → κ ∈ (0, 1).
(C2) tr


36i3

26j3
26l3

26h3


= o(tr2{(3613 + 3623)2}) for i, j, l, h = 1 or 2.
(C3) (µ1 − µ2)

T326i3
2(µ1 − µ2) = o(n−1tr((3613 + 3623)2)), for i = 1, 2. ((µ1 − µ2)

T3(µ1 − µ2))
2

= o(n−1

tr((3613 + 3623)2)).

The following theorem establishes the asymptotic null distribution of Tn.

Theorem 1. Under Conditions (C1)–(C3), as p and n → ∞,

Tn − E(Tn)
√
var(Tn)

L
−→N(0, 1).

Here we adopt the following ratio-consistent estimators of var(Tn) in Feng et al. (in press):

σ̂ 2
n

.
= var(Tn) =


2
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4
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
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1

2P4
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(Xsi1 − Xsi4),

s = 1, 2, and

tr(3613
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1
4P2

n1P
2
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i1≠i2
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
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,

where

D1(i1,i2,i3,i4) = diag(σ̂ 2
11(i1,i2,i3,i4) + γ σ̂ 2

21, . . . , σ̂
2
1p(i1,i2,i3,i4) + γ σ̂ 2

2p),

D2(i1,i2,i3,i4) = diag(σ̂ 2
11 + γ σ̂ 2

21(i1,i2,i3,i4), . . . , σ̂
2
1p + γ σ̂ 2

2p(i1,i2,i3,i4)),

D(i1,i2,i3,i4) = diag(σ̂ 2
11(i1,i2) + γ σ̂ 2

21(i3,i4), . . . , σ̂
2
1p(i1,i2) + γ σ̂ 2

2p(i3,i4)),

and σ̂ 2
sk(i1,...,il)

is the sth sample variance after excluding Xsij , j = 1, . . . , l, s = 1, 2, l = 2, 4, k = 1, . . . , p. Throughout this

article, we use


∗ to denote summations over distinct indexes. For example, in tr((3613)2), the summation is over the set
{i1 ≠ i2 ≠ i3 ≠ i4}, for all i1, i2, i3, i4 ∈ {1, . . . , n1} and Pm

n = n!/(n − m)!.
This result suggests rejecting H0 with α level of significance if Tn/σ̂n > zα , where zα is the upper α quantile of N(0, 1).
Theorem 1 shows that the power of our test is

βFS(∥3(µ1 − µ2)∥) = Φ


−zα +

nκ(1 − κ)∥3(µ1 − µ2)∥
2

2tr(36̃3)2


,

where 6̃ = (1 − κ)61 + κ62. In contrast, Chen and Qin (2010) showed that the power of their proposed test is

βCQ (∥µ1 − µ2∥) = Φ

−zα +
nκ(1 − κ)∥µ1 − µ2∥

2
2tr(6̃

2
)

 .

Thus, the asymptotic relative efficiency of our test with respect to CQ is

ARE(FS, CQ) =
∥3(µ1 − µ2)∥

2

∥µ1 − µ2∥
2


tr(6̃

2
)

tr(36̃3)2
.

Here we consider some representative cases.
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(i) µ1k − µ2k = δ, k = 1, . . . , p. Then,

ARE(FS, CQ) =
tr(Λ2)

p


tr(6̃

2
)

tr(36̃3)2
≥ 1

by the Cauchy inequality. When the variances of the components are equal, the tests are equivalently powerful from the
asymptotic viewpoint. Otherwise, the proposed test is preferable in terms of asymptotic power under local alternatives.

(ii) 61 = 62, diagonal. The variances of two half of components are ζ 2
1 and ζ 2

2 . Assume µ1k − µ2k = δ and k = 1, . . . , ⌊ p
2⌋.

Then,

ARE(FS, CQ) =


ζ 4
1 + ζ 4

2
√
2ζ 2

1

.

Therefore, the proposed test is more powerful than CQ if ζ 2
1 < ζ 2

2 , and vice versa. The ARE has a positive lower bound of
1/

√
2 when ζ 2

1 ≫ ζ 2
2 . It can be arbitrarily large if ζ 2

1 /ζ 2
2 is close to zero, showing the need for the scalar-invariance test.

3. Simulation

Here we report a simulation study designed to evaluate the performance of our proposed test (abbreviated as FS). We
compare our tests with the method proposed by Chen and Qin (2010) (abbreviated as CQ), and Srivastava et al. (2013)
(abbreviated as SKK), and Park and Ayyala (2013) (abbreviated as PA) under the unequal covariance matrices assumption.
We consider the following moving average model as Chen and Qin (2010):

Xijk = ρi1Zij + ρi2Zi(j+1) + · · · + ρiLiZi(j+Li−1) + µij

for i = 1, 2, j = 1, . . . , ni and k = 1, . . . , p, where {Zijk} are, respectively, i.i.d. random variables. Consider two scenarios
for the innovation {Zijk}: (Scenario I) all the {Zijk} are from N(0, 1); (Scenario II) the first half of the components of {Zijk}

p
k=1

are from centralized Gamma(4,1) so that it has zero mean, and the second half of the components are from N(0, 1). The
coefficients {ρil}

Li
l=1 are generated independently from U(2, 3) and are kept fixed once they are generated through our

simulations. The correlations among Xijk and Xijl are determined by |k − l| and Li. We choose L1 = 3, and L2 = 4 to generate
the different covariances of Xi.

We examine the empirical sizes and the estimation efficiency of the tests. Under the null hypothesis, the components of
the commonvectorµ1 = µ2 = µ0 = (µ1, . . . , µp) are generated fromU(0, λ). The sample sizes are n1 = n2 = 15. First,we
consider the impact of the dimensions.We fixλ = 10 and consider the six dimensions of p = 25, 50, 100, 200, 400 and 800.
We summarize the simulation results using the mean-standard deviation-ratio (MDR) E(T )/

√
var(T ) and the variance ratio

(VR) var(T )/var(T ). Because the explicit forms of E(T ) and var(T ) are difficult to calculate, we estimate them by simulation.
Fig. 1 shows theMDR, VR and empirical sizes of these four tests with different dimensions.We observe that theMDR and VR
of the SKK test are larger than zero and one when the dimensions becomes larger. This is not strange because SKK requires
that the dimensions are a smaller order of n2. Second, we consider the impact of common shifts. We fix the dimension
p = 800 and consider five common shifts λ = 10, 20, 30, 40 and 50. Fig. 2 reports the MDR, VR and empirical sizes of these
four tests with different common shifts. The MDR and VR of the PA test become larger when the common shifts are larger,
which further demonstrates that the PA test is not shift-invariant. In contrast, theMDR and VR of our test are approximately
zero and one, respectively. We can control the empirical size well. However, the empirical sizes of the other three tests
deviate from the nominal level in many cases.

Next, we compare the power of all the tests. Here, we only report the case of n1 = n2 = 15 and p = 800. For the al-
ternative hypothesis, µ1 = µ0 + µ and µ2 = µ0, where µ0 is generated as above. We choose µ in two scenarios: Case
A allocates all of the components of equal magnitude to be nonzero; Case B randomly allocates half of the components of
equal magnitude to be nonzero. To make the power comparable among the configurations of H1, we set η := ∥µ1 − µ2∥

2/
tr(62

1) + tr(62
2) = 0.15, 0.2, 0.25, 0.3, 0.35 throughout the simulation. Fig. 3 reports the empirical power of these four

tests. Under Scenario II, CQ is less powerful than the other three tests which is consistent with the theoretical results in
Section 2. Furthermore, our test performs better than the SKK and PA tests in all cases. These results suggest that the newly
proposed FS test is efficient for testing the equality of locations and is particularly useful when the variances of components
are not equal and the dimensions are ultra-high.

Finally, we compare our test with two other tests, the test proposed by Ahmad (2014) (abbreviated as AH) and the test
proposed by Thulin (2014) (abbreviated as RS). Here, we consider a multivariate normal distribution with equal covariance.
i.e. 61 = 62 = 6. Two scenarios are considered for 6: (i) weak dependence: 6 = (0.5|i−j|) and (ii) strong dependence:
6 = (aij), aii = 1, aij = 0.5, i ≠ j. The sample sizes are not equal, i.e. n1 = 15 and n2 = 20. We consider two dimensions
p = 50 and 100. For the alternative hypothesis, the settings are the same as above, except µ0 ∼ U(0, 2). Table 1 reports the
results of the empirical sizes and power with η = 0.15 and 0.3 under Case A. The empirical sizes of AH are smaller than the
nominal level because AH is not a shift-invariant test. Under the null hypothesis, the expectation of the AH test statistic is
(n1 + n2 − 2

√
n1n2 − 2)µT

0µ0. In this case, n1 + n2 − 2
√
n1n2 − 2 is negative. Consequently, the power of AH is smaller than
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Fig. 1. The MDR, VR and empirical sizes of tests with different dimensions.

Table 1
Empirical sizes and power (%) comparison at 0.05 significance.

p η Weak dependence Strong dependence
AH FS RS AH FS RS

50 0.00 0.0 6.1 4.9 2.7 6.6 4.3
0.15 7.7 31.6 20.6 30.2 30.8 13.2
0.30 28.7 60.5 42.2 48.0 48.3 21.1

100 0.00 0.0 4.2 4.4 3.4 6.1 4.1
0.15 1.9 31.6 25.3 27.0 27.8 16.9
0.30 13.4 64.0 50.5 47.9 48.3 29.0

our FS test. The empirical sizes of our FS test are a little larger than the nominal level under the strong dependence case. The
power of our FS test is eventually larger than that of the RS test in all cases. By only choosing random subspaces, the RS test
may not perform well in these cases.

4. Discussion

Our asymptotic and numerical results suggest that the proposed test is efficient in testing the equality of locations.
However, we lose all the information of the correlation between those variables. How to construct a more powerful test
under the strong dependence case deserves further research. Furthermore, our test is based on L2-norm, which is powerful
for denser and fainter signals but not efficient for sparser and stronger signals. In a significant development in another
direction using themax-norm rather than the L2-norm, Cai et al. (2013) proposed a test based on themax-norm of marginal
t-statistics. See also Zhong et al. (2013) for a related discussion.

Acknowledgments

This work was supported by the National Natural Science Foundation of China grants 11101074 and 11471069 and the
Fundamental Research Funds for the Central Universities grant 242015KJ003.



34 L. Feng, F. Sun / Statistics and Probability Letters 105 (2015) 29–36

Fig. 2. The MDR, VR and empirical sizes of tests with different λ.

Appendix. Proof of Theorem 1

We decompose Tn into two parts,

Tn =
1

n1(n1 − 1)
1

n2(n2 − 1)

p
k=1

n1 n1
i≠j

n2 n2
s≠t

(X1ik − X2sk)(X1jk − X2tk)

σ 2
1k + γ σ 2

2k

+
1

n1(n1 − 1)
1

n2(n2 − 1)

p
k=1

n1 n1
i≠j

n2 n2
s≠t

(X1ik − X2sk)(X1jk − X2tk)


1

σ̂ 2
1k(i,j) + γ σ̂ 2

2k(s,t)
−

1
σ 2
1k + γ σ 2

2k


.
= Tn1 + Tn2.

It is straightforward to see that

E(Tn1) =

p
k=1

(µ1k − µ2k)
2

σ 2
1k + γ σ 2

2k
= ∥3(µ1 − µ2)∥

2,

var(Tn1) =
2

n1(n1 − 1)
tr((3613)2) +

2
n2(n2 − 1)

tr((3623)2) +
4

n1n2
tr(3613

2623)

+
4
n1

(µ1 − µ2)
T32613

2(µ1 − µ2) +
4
n2

(µ1 − µ2)
T32623

2(µ1 − µ2).

Lemma 1. Under the same conditions as Theorem 1, as p and n → ∞,

Tn1 − E(Tn1)
√
var(Tn1)

L
−→N(0, 1).
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Fig. 3. The power of tests with different η when n1 = n2 = 15, p = 800.

This lemma is a direct corollary of Theorem 1 in Chen and Qin (2010).
Next, we only need to show that Tn2 = op(

√
var(Tn1)). Define Yijk = Xijk − µik, i = 1, 2, j = 1, . . . , ni, k = 1, . . . , p.

Tn2 =
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n2(n2 − 1)
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+
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
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By Theorem 1 in Park and Ayyala (2013), we have
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= O(n−3tr((3613)2)) = o(var(Tn1))
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E
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= O(n−3tr(3613
2623)) = o(var(Tn1)).

Thus, R1 = op(
√
var(Tn1)). Similarly,

R2 =
2

n2(n2 − 1)(n1 − 1)

n2
t≠s

n2
s=1

n1
j≠i


1
n1

n1
i=1

YT
1i(3̂

2
(i,j,s,t) − 32)(µ1 − µ2)



−
2

n1(n1 − 1)(n2 − 1)

n1
j≠i

n1
i=1

n2
t≠s


1
n2

n1
s=1

YT
2s(3̂

2
(i,j,s,t) − 32)(µ1 − µ2)


.

By the proof of Theorem 2 in Park and Ayyala (2013), we have

E


1
n1

n1
i=1

YT
1i(3̂

2
(i,j,s,t) − 32)(µ1 − µ2)

2

= O(n−2(µ1 − µ2)
T32613

2(µ1 − µ2))

E


1
n2

n1
s=1

YT
2s(3̂

2
(i,j,s,t) − 32)(µ1 − µ2)

2

= O(n−2(µ1 − µ2)
T32623

2(µ1 − µ2)).

By the Condition (C3), we also have R2 = op(
√
var(Tn1)). And E(R2

3) = O(n−1((µ1 − µ2)
T3(µ1 − µ2))

2) = o(var(Tn1)).
Thus, we proof that Tn2 = op(

√
var(Tn1)).
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